

An Altra Industrial Motion Company

# Klimaziele der Europäischen Union

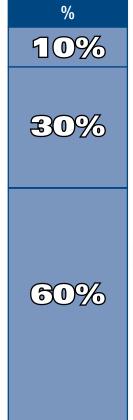
Die Zahlen sind geläufig, rund 70 Prozent des Energiebedarfs der Industrie werden durch Elektromotoren verursacht. Dies entspricht einer CO2-Emission von rund 427 Millionen Tonnen. Die Europäische Kommission ist sich sicher, dass sich mit entsprechenden Maßnahmen Einsparungen erzielen lassen, die dem Stromverbrauch Schwedens entsprechen.

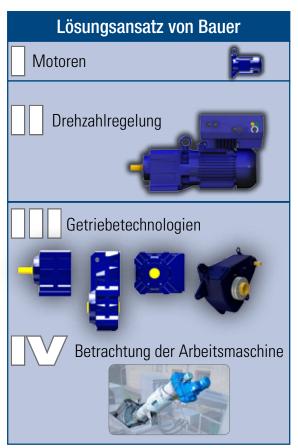
Die EU-Direktive ErP 2009/125/EG (Öko-Design-Anforderungen für energiebetriebene Produkte) definiert die Voraussetzungen dazu. Die EU-Mitgliedstaaten haben am 11. März 2009 auf einer Sitzung des Ökodesign-Regelungsausschusses die neuen Regeln zur Verringerung des Energiebedarfs von Industriemotoren unterstützt.

In einer Information gleichen Datums wird der für Energie zuständige Kommis-

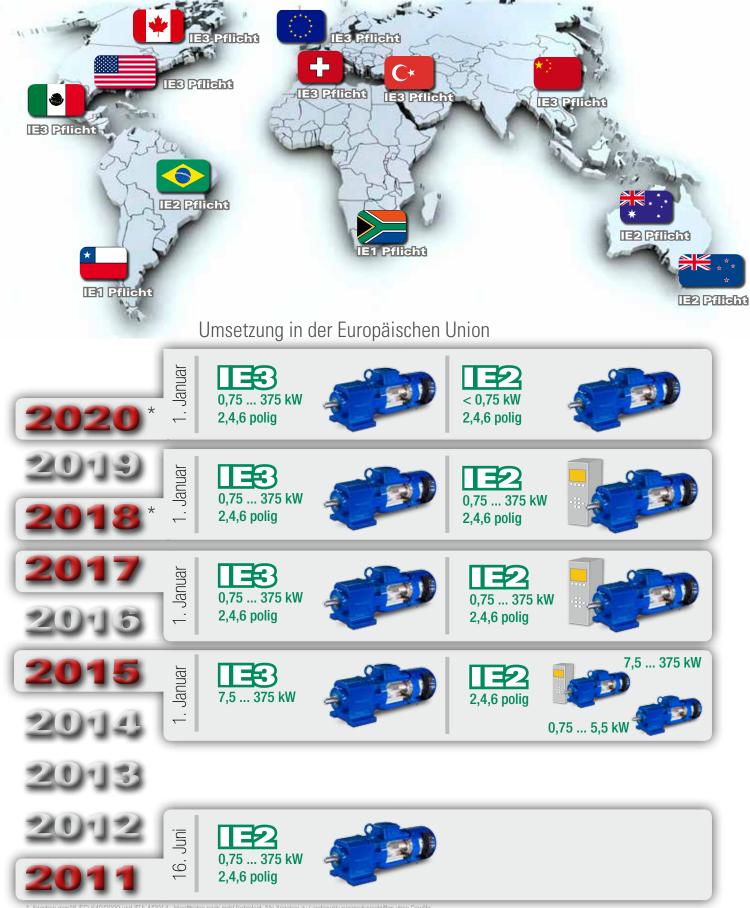
sar Andris Piebalgs mit den Worten zitiert: "Diese Maßnahme ist ein konkreter Beitrag zur Verwirklichung der Ziele, die sich die EU in Bezug auf Energieeffizienz und Klimaschutz gesetzt hat. Sie wird rasch zu deutlichen Energieeinsparungen und erheblichen Vorteilen für die Gesellschaft und die Industrie führen, wie dies im europäischen Konjunkturprogramm vorgesehen ist." Damit meint er auch, dass mit der vorgeschlagenen Verordnung die Hoffnung verbunden ist, bis 2020 rund 40 000 neue Arbeitsplätze zu schaffen und Einsparungen beim Stromverbrauch in Höhe von neun Milliarden Euro zu erzielen.

Die Verordnung sieht drei Stufen vor: Seit 16. Juni 2011 müssen die Motoren mindestens dem Standard (MEPS - Minimum Efficiency Performance Standards) der Energieeffizienzklasse IE2 (High Efficiency,


vorher eff1) entsprechen. Seit Januar 2015 gilt für die Leistungsklasse 7,5 – 375 kW und ab Januar 2017 für Motoren mit 0,75 – 375 kW die Energieeffizienzklasse IE3 (Premium Efficiency). Ausgenommen sind Motoren, die von einem Frequenzumrichter gesteuert werden. Für sie genügt IE2.


# Unternehmenspolitik

Darüber hinaus sehen wir im Öko-Design eine Bestätigung unserer Anstrengungen. Bauer Gear Motor verfolgt seine Ziele mit einem Minimum an Rohstoff- und Energieverbrauch, einer geringstmöglichen Beeinflussung der Umwelt und einer effizienten Nutzung der Ressourcen. Bauer Gear Motor unterstützt die Direktive voll, zumal sich die meisten unserer Entwicklungen der Energieeinsparung verschrieben haben.


# Wo liegen die Einsparpotenziale?







# Weltweite Vorschriften für Energiesparmotoren



# Die europäische Norm EN 50598

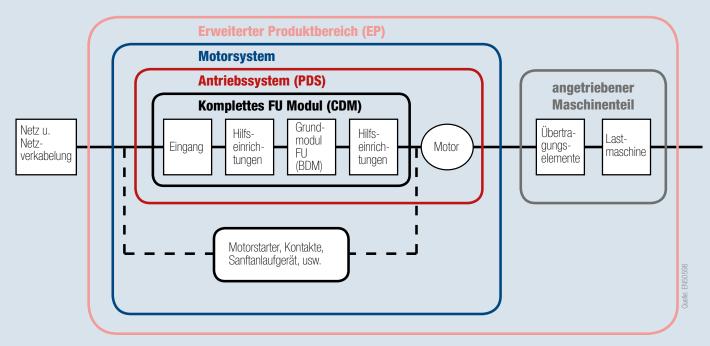
Die neue Norm EN 50598 bestehend aus 3 Teilen legt Ökodesignanforderungen für Antriebssysteme, Motorstarter, Leistungselektronik und deren angetriebene Einrichtungen fest.

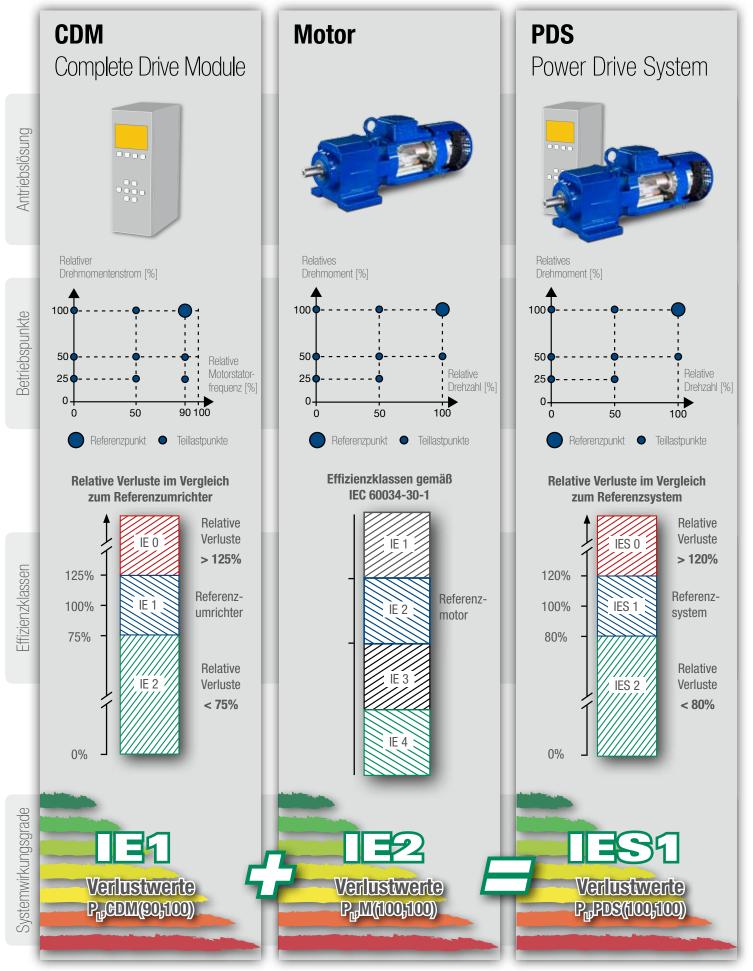
Teil 1: Allgemeine Anforderungen zur Erstellung von Normen zur Energieeffizienz von Ausrüstungen mit Elektroantrieb nach dem erweiterten Produktansatz (EPA) mit semi-analytischen Modellen (SAM).

Dieser Teil legt die Methodik für die Bestimmung der Verluste des erweiterten Produktes und seiner Bestandteile fest. Hierdurch erhält ein Produktkomitee in der Normungsarbeit die Möglichkeit, die Verlustleistungen des eingebauten elektrischen Motorsystems mit der davon angetriebenen Anlage jeder Art zu verknüpfen und für das erweiterte Produkt die System-Energieeffizienz zu bestimmen.

Teil 2: Indikatoren für die Energieeffizienz von Antriebssystemen und Motorstartern. In diesem Teil der EN 50598 wird die Methodik zur Bestimmung der Verluste des vollständigen Motorsystems, des Antriebssystems (PDS) und des CDM (Complete Drive Module) bei 8 applikationsrelevanten Betriebspunkten für Motorantriebsanwen-

dungen im Leistungsbereich von 0,12 kW bis 1000 kW festgelegt.


Des Weiteren werden Verluste des Referenzmotors, des Referenz-CDM und des Referenz-PDS für die festgelegten 8 Betriebspunkte festgelegt und neue Effizienzklassen für das Antriebssystem PDS (IESO-IES2) als auch für das CDM (IEO-IE2) neu definiert. Als Referenzmotor (RM) werden die Verluste von vierpoligen Asynchronmotoren mit den 50-Hz-IE2 Wirkungsgradwerten nach EN 60034-30 und diversen in dieser Norm beschriebenen Faktoren abgeleitet.


Teil 3: Quantitativer Ökodesign-Ansatz mittels Ökobilanzierung einschließlich Produktkategorieregeln und dem Inhalt von Umweltdeklarationen

In diesem Teil der Norm wird das Thema ,Öko-Design' und die Berücksichtigung wesentlicher Umweltaspekte beim Produktdesign von Motorsystemen (Motorstarter/ Drive Controller, Motor) festgelegt.



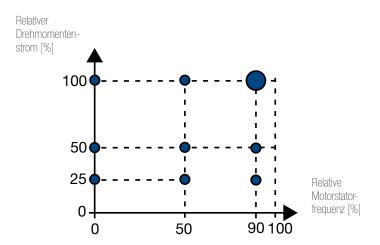
# Darstellung des erweiterten Produktansatzes

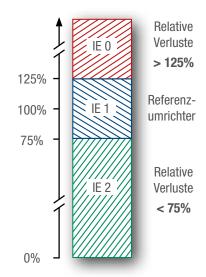




# CDM - Complete Drive Module

Das CDM - Complete Drive Module beinhaltet sowohl den Drive Controller als auch Hilfseinrichtungen und Eingangskomponenten. Die Effizienzklassen IEO bis IE2 der Drive Controller, welche in der EN 50598 festgelegt sind, beziehen sich auf den 90;100 Betriebspunkt d. h. 90 % Motorstatorfrquenz und 100 % Drehmomentenstrom. Der Referenz-Drive-Controller hat die Effizienzklasse IE 1. Untenstehende Tabelle zeigt die Verluste eines Referenz-CDMs (400 V, Effizienzklasse IE1) gemäß EN 50598.





# Referenzwerte gemäß EN 50598-2

| $\mathbf{P}_{\mathrm{r,M}}$ | S <sub>r,equ</sub> | P <sub>L,RCDM</sub> [W] |        |         |         |         |          |         |          |  |
|-----------------------------|--------------------|-------------------------|--------|---------|---------|---------|----------|---------|----------|--|
| kW                          | kVA                | (0;25)                  | (0;50) | (0;100) | (50;25) | (50;50) | (50;100) | (90;50) | (90;100) |  |
| 0,12                        | 0,278              | 94                      | 94     | 95      | 94      | 95      | 97       | 96      | 100      |  |
| 0,18                        | 0,381              | 96                      | 96     | 98      | 97      | 97      | 100      | 98      | 104      |  |
| 0,25                        | 0,5                | 99                      | 99     | 101     | 99      | 100     | 104      | 102     | 109      |  |
| 0,37                        | 0,697              | 103                     | 103    | 107     | 104     | 105     | 110      | 107     | 117      |  |
| 0,55                        | 0,977              | 109                     | 109    | 114     | 110     | 111     | 119      | 115     | 129      |  |
| 0,75                        | 1,29               | 116                     | 116    | 122     | 117     | 119     | 129      | 123     | 142      |  |
| 1,1                         | 1,71               | 117                     | 122    | 134     | 119     | 125     | 144      | 131     | 163      |  |
| 1,5                         | 2,29               | 127                     | 134    | 149     | 129     | 138     | 163      | 146     | 188      |  |
| 2,2                         | 3,3                | 150                     | 159    | 182     | 152     | 166     | 201      | 177     | 237      |  |
| 3                           | 4,44               | 181                     | 193    | 224     | 184     | 202     | 250      | 218     | 299      |  |
| 4                           | 5,85               | 219                     | 235    | 276     | 223     | 247     | 309      | 267     | 374      |  |
| 5,5                         | 7,94               | 266                     | 288    | 343     | 272     | 304     | 389      | 332     | 477      |  |
| 7,5                         | 9,95               | 279                     | 307    | 400     | 285     | 326     | 462      | 359     | 581      |  |
| 11                          | 14,4               | 344                     | 386    | 520     | 354     | 413     | 609      | 461     | 781      |  |
| 15                          | 19,5               | 419                     | 476    | 657     | 433     | 513     | 778      | 577     | 1010     |  |
| 18,5                        | 23,9               | 483                     | 554    | 774     | 500     | 600     | 923      | 676     | 1207     |  |
| 22                          | 28,3               | 549                     | 631    | 894     | 569     | 688     | 1070     | 778     | 1408     |  |
| 30                          | 38,2               | 699                     | 810    | 1165    | 726     | 882     | 1402     | 1008    | 1858     |  |
| 37                          | 47                 | 827                     | 964    | 1401    | 860     | 1053    | 1692     | 1208    | 2253     |  |
| 45                          | 56,9               | 973                     | 1144   | 1667    | 1013    | 1252    | 2020     | 1434    | 2700     |  |

<sup>\*)</sup> Dieser Wert wird in der Beispielrechnung eines PDS auf Seite 9 verwendet.

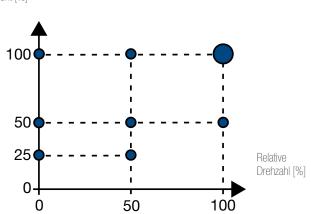


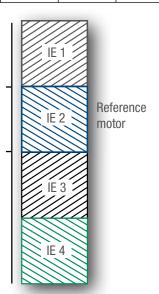




# Motoren

Die Effizienzklassen bei Motoren sind nach IEC 60034-30-1 in die Klassen IE1 bis IE4 eingeteilt. Die Werte beziehen sich auf den Betriebspunkt 100;100 d. h. 100 % Drehzahl und 100 % Drehmoment. Motorhersteller sind nicht verpflichtet, die Verlustwerte bei allen Betriebspunkten anzugeben. Bauer unterstützt seine Kunden und nennt die Verlustwerte seiner Permanentmagnetsynchronmotoren, damit sie selbst die Gesamtverluste ermitteln und - wie bisher - ihre Systemoptimierung weiterführen können und ihr Kernwissen schützen.





# Verlustwerte BAUER PMS-Motoren

| $\mathbf{P}_{\mathrm{r,M}}$ | Тур    | IE-    |        | P <sub>L,M</sub> [W] |         |         |         |          |          |           |        |
|-----------------------------|--------|--------|--------|----------------------|---------|---------|---------|----------|----------|-----------|--------|
| kW                          |        | Klasse | (0;25) | (0;50)               | (0;100) | (50;25) | (50;50) | (50;100) | (100;50) | (100;100) | Klasse |
| 0,75                        | S08MA4 | IE4    | 8      | 21                   | 99      | 12      | 37      | 103      | 33       | 108       | IES2   |
| 1,1                         | S08MA4 | IE3    | 10     | 44                   | 207     | 16      | 50      | 208      | 56       | 209       | IES2   |
| 1,1                         | S08LA4 | IE4    | 6      | 25                   | 115     | 19      | 40      | 134      | 81       | 155       | IES2   |
| 1,5                         | S08LA4 | IE3    | 12     | 55                   | 247     | 26      | 72      | 268      | 91       | 275       | IES2   |
| 1,5                         | S09SA4 | IE4    | 10     | 41                   | 153     | 29      | 59      | 178      | 81       | 207       | IES2   |
| 2,2                         | S09SA4 | IE3    | 12     | 74                   | 292     | 39      | 97      | 330      | 121      | 367       | IES2   |
| 2,2                         | S09XA4 | IE4    | 16     | 47                   | 171     | 30      | 65      | 194      | 115      | 251       | IES2   |
| 3                           | S09XA4 | IE3    | 26     | 90                   | 344     | 43      | 110     | 369      | 162      | 427       | IES2   |
| 3                           | S11SA6 | IE4    | 25     | 55                   | 229     | 62      | 93      | 269      | 137      | 314       | IES2   |
| 4                           | S11SA6 | IE3    | 35     | 91                   | 408     | 67      | 130     | 446      | 175      | 490       | IES2   |
| 4                           | S11MA6 | IE4    | 18     | 47                   | 214     | 82      | 112     | 276      | 187      | 348       | IES2   |
| 5,5                         | S11MA6 | IE3    | 24     | 89                   | 402     | 88      | 153     | 470      | 227      | 537       | IES2   |
| 5,5                         | S11LA6 | IE4    | 72     | 63                   | 262     | 104     | 144     | 347      | 238      | 445       | IES2   |
| 7,5                         | S11LA6 | IE3    | 35     | 118                  | 519     | 114     | 200     | 604      | 296      | 703       | IES2   |

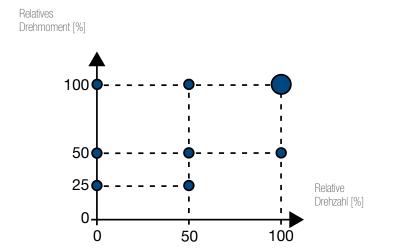
<sup>\*)</sup> Dieser Wert wird in der Beispielrechnung eines PDS auf Seite 9 verwendet.

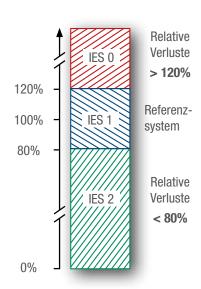
Relatives
Drehmoment [%]





# PDS - Power Drive System


Ein PDS oder Power Drive System besteht aus einem CDM - Complete Drive Module und einem Motor. Die EN 50598-2 definiert Referenz Power Drive Systems welche auf einem 4-poligen Referenzmotor der Wirkungsgradklasse IE2 und einem Referenz-CDM bei 400 V basieren. Die Effizienklassen IES 0 bis IES 2 beziehen sich auf den Betriebspunkt 100;100 d. h. 100 % Drehzahl und 100 % Drehmoment. Die Referenzwerte gemäß EN 0598-2 finden sie in folgender Tabelle.

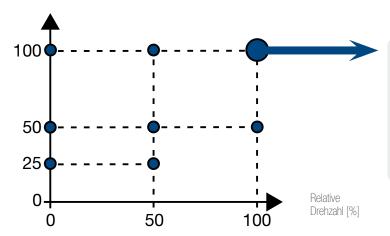



# Referenzwerte gemäß EN 50598-2

| $\mathbf{P}_{\mathrm{r,M}}$ | P <sub>L,PDS</sub> [W] |        |         |         |         |          |          |           |  |  |
|-----------------------------|------------------------|--------|---------|---------|---------|----------|----------|-----------|--|--|
| kW                          | (0;25)                 | (0;50) | (0;100) | (50;25) | (50;50) | (50;100) | (100;50) | (100;100) |  |  |
| 0,12                        | 129                    | 133    | 167     | 138     | 143     | 177      | 164      | 207       |  |  |
| 0,18                        | 139                    | 145    | 183     | 152     | 158     | 196      | 187      | 229       |  |  |
| 0,25                        | 147                    | 155    | 196     | 162     | 170     | 212      | 206      | 256       |  |  |
| 0,37                        | 158                    | 168    | 220     | 176     | 186     | 238      | 226      | 295       |  |  |
| 0,55                        | 173                    | 189    | 266     | 192     | 209     | 285      | 248      | 338       |  |  |
| 0,75                        | 185                    | 204    | 293     | 208     | 227     | 314      | 283      | 387       |  |  |
| 1,1                         | 199                    | 229    | 359     | 228     | 261     | 388      | 329      | 484       |  |  |
| 1,5                         | 217                    | 257    | 418     | 254     | 300     | 458      | 379      | 585       |  |  |
| 2,2                         | 264                    | 317    | 523     | 315     | 372     | 595      | 487      | 760       |  |  |
| 3                           | 316                    | 382    | 638     | 379     | 451     | 736      | 597      | 948       |  |  |
| 4                           | 371                    | 451    | 764     | 448     | 539     | 886      | 720      | 1164      |  |  |
| 5,5                         | 431                    | 530    | 921     | 530     | 640     | 1082     | 869      | 1462      |  |  |
| 7,5                         | 466                    | 585    | 1097    | 584     | 724     | 1302     | 1009     | 1801      |  |  |
| 11                          | 586                    | 760    | 1477    | 750     | 953     | 1753     | 1340     | 2376      |  |  |
| 15                          | 690                    | 926    | 1782    | 899     | 1158    | 2159     | 1643     | 2997      |  |  |
| 18,5                        | 797                    | 1073   | 2089    | 1036    | 1339    | 2533     | 1889     | 3486      |  |  |
| 22                          | 902                    | 1203   | 2389    | 1186    | 1525    | 2895     | 2169     | 3983      |  |  |
| 30                          | 1149                   | 1500   | 3024    | 1476    | 1902    | 3651     | 2739     | 5053      |  |  |
| 37                          | 1310                   | 1739   | 3474    | 1746    | 2239    | 4244     | 3219     | 5973      |  |  |
| 45                          | 1512                   | 1998   | 3915    | 2003    | 2556    | 4856     | 3780     | 6957      |  |  |

Quelle: EN50598






# Wie wird die Effizienklasse des PDS-Systems ermittelt?

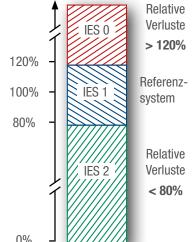
Die Effizienzklasse des Systems wird ermittelt durch die Addition der Verluste des CDMs und des Motors bei dem Betriebspunkt 100;100 d. h. 100 % Drehzahl und 100 % Drehmoment. Die IES-Klasse lässt sich dann aus der Tabelle ablesen.



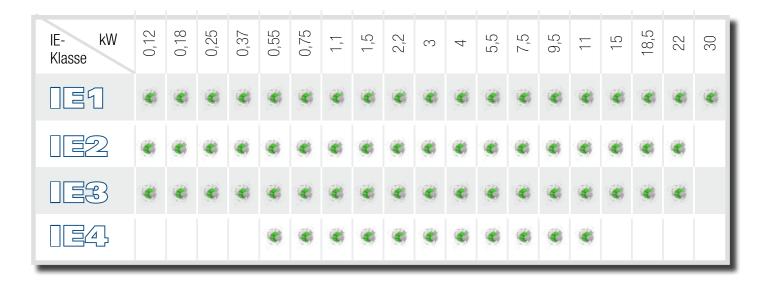
Relatives Drehmoment [%]






# Verlustwerte gemäß EN 50598-2

| Р               | P <sub>L,RM</sub> | P <sub>L,RCDM</sub> | P <sub>L,RPDS</sub> |           | IES-Klasse        |           | Berechnungsbeisp<br>3 kW PMSM Motor |                                         |
|-----------------|-------------------|---------------------|---------------------|-----------|-------------------|-----------|-------------------------------------|-----------------------------------------|
| kW              | W                 | W                   | W                   | IES 0     | IES 1             | IES 2     | Umrichter                           | ,                                       |
| 0,12            | 96                | 100                 | 207                 | > 248 W   | 166 W - 248 W     | < 166 W   | Offilialitati                       | (1 🗆 1 )                                |
| 0,18            | 113               | 104                 | 229                 | > 275 W   | 183 W - 275 W     | < 183 W   | Verluste Ui                         | mrichter:                               |
| 0,25            | 132               | 109                 | 256                 | > 307 W   | 205 W - 307 W     | < 205 W   | Verluste M                          |                                         |
| 0,37            | 160               | 117                 | 295                 | > 354 W   | 236 W - 354 W     | < 236 W   |                                     |                                         |
| 0,55            | 188               | 129                 | 338                 | > 406 W   | 270 W - 406 W     | < 270 W   | Verluste Sy                         | ıstem (                                 |
| 0,75            | 221               | 142                 | 387                 | > 464 W   | 310 W - 464 W     | < 310 W   |                                     | , , , , , , , , , , , , , , , , , , , , |
| 1,1             | 289               | 163                 | 484                 | > 581 W   | 387 W - 581 W     | < 387 W   |                                     |                                         |
| 1,5             | 358               | 188                 | 585                 | > 702 W   | 468 W - 702 W     | < 468 W   |                                     |                                         |
| 2,2             | 471               | 237                 | 760                 | > 912 W   | 608 W - 912 W     | < 608 W   |                                     |                                         |
| 3               | 585               | 299                 | 948                 | > 1.138 W | 758 W - 1.138 W   | < 758 W   | 1                                   |                                         |
| 4               | 712               | 374                 | 1164                | > 1.397 W | 931 W - 1.397 W   | < 931 W   |                                     | IES 0                                   |
| 5,5             | 887               | 477                 | 1462                | > 1.754 W | 1.170 W - 1.754 W | < 1.170 W |                                     |                                         |
| 7,5             | 1099              | 581                 | 1801                | > 2.161 W | 1.441 W - 2.161 W | < 1.441 W | 120% -                              |                                         |
| 11              | 1437              | 781                 | 2376                | > 2.851 W | 1.901 W - 2.851 W | < 1.901 W | 100% -                              | IES 1                                   |
| 15              | 1790              | 1010                | 2997                | > 3.596 W | 2.398 W - 3.596 W | < 2.398 W | 10070                               |                                         |
| 18,5            | 2053              | 1207                | 3486                | > 4.183 W | 2.789 W - 4.183 W | < 2.789 W | 80% -                               |                                         |
| 22              | 2320              | 1408                | 3983                | > 4.780 W | 3.186 W - 4.780 W | < 3.186 W |                                     | \/////                                  |
| 30              | 2878              | 1858                | 5053                | > 6.064 W | 4.042 W - 6.064 W | < 4.042 W |                                     | //////////////////////////////////////  |
| 37              | 3351              | 2253                | 5973                | > 7.168 W | 4.778 W - 7.168 W | < 4.778 W | ل ا                                 | ///////                                 |
| 45              | 3835              | 2700                | 6957                | > 8.348 W | 5.566 W - 8.348 W | < 5.566 W | 1                                   | <b>\</b> //////                         |
| Quelle: EN50598 |                   |                     |                     | ,         |                   | ,         | 1                                   | V//////                                 |


(IE4) mit einem

299 W 427 W





# Bauer Produkte für effiziente Systemlösungen





# **Modular**

Der "Allesköner" für vielfältige Anwendungen.



- Fördertechnik
- Materialförderung

# Stirnradgetriebe BG-Reihe

| Leistung   | 0,03 75                                           | kW |
|------------|---------------------------------------------------|----|
| Drehmoment | 20 18.500                                         | Nm |
| Ihr Nutzen | Robuste Konstruktion ermöglicht hohe Standzeiten. |    |



# Flachgetriebe BF-Reihe

| Leistung   | 0,03 75                                                                                    | kW |
|------------|--------------------------------------------------------------------------------------------|----|
| Drehmoment | 90 18.500                                                                                  | Nm |
| Ihr Nutzen | Kompakte Bauform<br>und vielseitige<br>Anbaumöglichkeiten<br>reduzieren den<br>Raumbedarf. |    |



# **Kegelradgetriebe BK-Reihe**

| Leistung   | 0,03 75                                                                                   | kW |
|------------|-------------------------------------------------------------------------------------------|----|
| Drehmoment | 80 18.500                                                                                 | Nm |
| Ihr Nutzen | Energieeffizient durch<br>hohen Wirkungsgrad<br>in der zweistufigen<br>Grundkonstruktion. |    |



# Schneckengetriebe BS-Reihe

| Leistung   | 0,03 5,5                                                                                                                            | kW |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|----|
| Drehmoment | 25 1.000                                                                                                                            | Nm |
| Ihr Nutzen | Kompakt und belast-<br>bar durch hochwertige<br>Schneckenverzahnung.<br>Dadurch lange<br>Lebensdauer und geringe<br>Wartungskosten. |    |



# **Applikationsspezifisch**

Der "Anwendungsmeister" - bestens an Ihre Anwendung angepasst.



- Hüttenwesen
- Lebensmittel und Getränke
- Kran Technologien
- Schüttgutindustrie
- Wasser / Abwasser
- Textil
- Chemische Industrie
- Automobil



# Kundenspezifisch

Der "Integrationsexperte" - optimal in Ihre Maschine integriert.



- Textilindustrie
  - Flachstrickmaschinen Rundstrickmaschinen
  - Webmaschinen
- Druckindustrie
  - Offsetdruckmaschienen:
  - Rollen- und Bogenoffset
- Verpackungsindustrie
  - Umreifungsmaschinen
  - Palettenpackpressen
  - Dreharmwickler

# Wo liegen die Vorteile für Sie?

# Bauer Motoren bringen Wirkungsgradvorteile in Teillast

Die speziell entwickelten Bauer-Permanentmagnet-Synchronmotoren erfüllen natürlich die gesetzlichen Vorgaben von IE3 und IE4. Ihre Stärke liegt jedoch in der Nutzung im Teillastbereich. Durch den Einsatz von Bauer-Permanentmagnet-Synchronmotoren lassen sich in Standardanwendungen unter Teillastbedingungen oft mehr als 30 % Energieeinsparungen im Vergleich zur Asynchron-Motortechnologie erreichen.

# Sinkende Netzanschlußleistung spart Geld

Von der höheren Energieeffizienz, die durch sorgfältige Produktauswahl von den am besten passenden Komponentenherstellern zu erreichen ist, profitieren Endanwender und Maschinenbauer. In vielen Anwendungen kann anstelle eines Asynchronmotors ein kleinerer Permanentmagnet-Synchronmotor verwendet werden, was die Auswahl von kleineren Komponenten entlang der gesamten Antriebskette ermöglicht. So können Maschinenbauer nicht nur den Wirkungsgrad steigern, sondern auch die Kosten des Gesamtsystems optimieren. Zusätzliche Energieeinsparungen reduzieren für den Endanwender die Stromkosten und senken die Netzanschlussleistung - somit die Betriebskosten des gesamten Produktionsstandortes.

# Die EN 50598 ermöglicht es, Teillastverluste des gesamten Systems zu bestimmen

Die EN 50598-2 verlagert den Fokus von der Einzelkomponente auf die Effizienz des gesamten Antriebssystems. Die neuen Effizienzklassen (International Efficiency for Systems, IES) ermöglichen eine einfache Ermittlung der Gesamtverluste für ein gesamtes Antriebssystem (PDS).

Da zukünftig alle Komponentenhersteller nach diesem neuen Standard ihre Verlustdaten offenlegen, können optimierte Anwendungen mit den unterschiedlichsten Komponenten konzipiert werden. Die neue Norm wird eine sehr genaue Vorausberechnung der Verlustleistungen ermöglichen, sodass der ROI (Return of Invest) zuverlässig ermittelt werden kann. Bislang wurde der Gesamtwirkungsgrad drehzahlgeregelter Elektromotoren mithilfe überschlägiger Energieverbrauchsberechnungen geschätzt.

Jetzt ist es möglich, für die in der Norm definierten 8 Betriebspunkte über eine einfache Addition von Verlustleistungen, die Gesamtverluste eine Systems auch für den Teillastbetrieb zu ermitteln. Bauer unterstützt seine Kunden, Abhängigkeiten von Systemlösungsanbietern zu vermeiden, um so die Systemkompetenz auch in Zukunft als Wettbewerbsvorteil zu sichern.

Bauer-Kunden werden für alle Komponenten Klarheit über die Verlustdaten gemäß EN 50598 erhalten und dadurch in der Lage sein, die Gesamtverluste zu ermitteln. Wie schon heute können sie mit Bauer ihre Systeme optimieren, um ihr Kernwissen zu schützen.

# FAZIT

Bauer begrüßt die neue Norm und ist davon überzeugt, dass sie dem Endanwender zusätzliche Energieeinsparungen bringen wird, da die Gesamtapplikation optimiert wurde. Der Wirkungsgrad des Elektromotors wird nicht mehr isoliert betrachtet. Die Lebenszykluskosten werden transparent und der Anlagen- oder Maschinenhersteller erhält einen hohen Freiheitsgrad in der Auswahl von den am besten passenden Antriebskomponenten.



# **Altra Industrial Motion**

Alle Kundenservicenummern sind fett gedruckt

### **Ameridrives Couplings**

Mill Spindles, Ameriflex, Ameridisc

Erie, PA - USA

1-814-480-5000

Gear Couplings

San Marcos, TX - USA

1-800-458-0887

### **Bibby Turboflex**

Disc, Gear, Grid Couplings, Overload Clutches

Dewsbury, England

+44 (0) 1924 460801

Boksburg, South Africa +27 (0) 11 918 4270

## TB Wood's

Elastomeric Couplings

Chambersburg, PA - USA

1-888-829-6637- Press #5

For application assistance: 1-888-829-6637 — Press #7

General Purpose Disc Couplings

San Marcos, TX - USA

1-888-449-9439

### **Ameridrives Power Transmission**

Universal Joints, Drive Shafts, Mill Gear Couplings

Green Bay, WI - USA

1-920-593-2444

### **Huco Dynatork**

Precision Couplings and Air Motors

Hertford, England

+44 (0) 1992 501900

Chambersburg, PA - USA

1-888-829-6637

## **Lamiflex Couplings**

Flexible Couplings, Bearing Isolators, and Coupling Guards

São Paulo, SP - Brasil

+55 (11) 5679-6533

# **Guardian Couplings**

Flywheel, Jaw, Shear, Gear, Grid, Disc and Engine Couplings

Michigan City, IN - USA

1-219-874-5248

## **Kilian Manufacturing**

Engineered Bearing Assemblies Syracuse, NY - USA 1-315-432-0700

# Electromagnetic Clutches and Brakes

### Warner Electric

Electromagnetic Clutches and Brakes

New Hartford, CT - USA

1-800-825-6544

For application assistance: 1-800-825-9050

## Saint Barthélémy d'Anjou, France +33 (0) 2 41 21 24 24

Precision Electric Coils and Electromagnetic Clutches and Brakes

Columbia City, IN - USA

1-260-244-6183

### **Matrix International**

Electromagnetic Clutches and Brakes, Pressure Operated Clutches and Brakes

Brechin, Scotland +44 (0) 1356 602000

New Hartford, CT - USA

1-800-825-6544

### **Inertia Dynamics**

Spring Set Brakes; Power On and Wrap Spring Clutch/Brakes

New Hartford CT - USA 1-800-800-6445

### Overrunning Clutches

# **Formsprag Clutch**

Overrunning Clutches and Holdbacks

Warren, MI - USA 1-800-348-0881- Press #1

For application assistance:

1-800-348-0881 - Press #2

## **Marland Clutch**

Roller Ramp and Sprag Type Over-running Clutches and Backstops

South Beloit, IL - USA

1-800-216-3515

# Stieber Clutch

Overrunning Clutches and Holdbacks

Heidelberg, Germany

+49 (0) 6221 30 47 0

# **Belted Drives and Sheaves**

# TB Wood's

Belted Drives

Chambersburg, PA - USA

1-888-829-6637 - Press #5

For application assistance: 1-888-829-6637 - Press #7

# Heavy Duty Clutches and Brakes

### Wichita Clutch

Pneumatic Clutches and Brakes

Wichita Falls, TX - USA 1-800-964-3262

Bedford, England

+44 (0) 1234 350311

### **Twiflex Limited**

Caliper Brakes and Thrusters

Twickenham, England +44 (0) 20 8894 1161

# **Industrial Clutch**

Pneumatic and Oil Immersed Clutches and Brakes

Waukesha, WI - USA

1-262-547-3357

### **Svendborg Brakes**

Industrial Brakes and Brake Systems

Vejstrup. Denmark

+45 63 255 255

### Gearing

### **Boston Gear**

Enclosed and Open Gearing, Electrical and Mechanical P.T. Components

Charlotte, NC - USA

1-800-825-6544

For application assistance 1-800-816-5608

### **Bauer Gear Motor**

Geared Motors

Esslingen, Germany

+49 (711) 3518-0

Somerset, NJ - USA

1-732-469-8770

# **Nuttall Gear and**

**Delroyd Worm Gear** Worm Gear and Helical Speed Reducers

Niagara Falls, NY - USA

1-716-298-4100

## **Linear Products**

Warner Linear

Linear Actuators Belvidere, IL - USA

1-800-825-6544

For application assistance:

1-800-825-9050

+33 (0) 2 41 21 24 24

Saint Barthélémy d'Anjou, France

# **Bauer Gear Motor**

### **Bauer Gear Motor GmbH**

Eberhard-Bauer-Straße 37 73734 Esslingen - Germany

+49 711 3518 0

+49 711 3518 381 (Fax)

### **Bauer Gear Motor** Slovakia s.r.o.

Tovarenskå 49 953 01 Zlate Moravce - Slovakia

+421 37 6926100

+421 37 6926181 (Fax)

## **Bauer Gear Motor Limited**

Nat Lane Business Park Winsford, Cheshire CW7 3BS - United Kingdom

+44 1606 868600

+44 1606 868603 (Fax)

### **Bauer Gear Motor LLC**

31 Schoolhouse Rd. Somerset NJ 08873-1212 - USA

+1 732 469 8770

+1 732 469 8773 (Fax)

## **Altra Industrial Motion** (Shenzhen) Co., Ltd.

18 Huan Zhen Road Dabo Industrial Zone - BoGoang Village ShaJing Town - BaoAn District **Guangdong Province** 518104 Shenzhen City - China

+86 755 27246308

+86 755 27246017 (Fax)

# **Altra Industrial Motion 000**

Volokolamskove sh., 142, bldg 6 Business Center "Irbis"

125464 Moscow - Russia

+7 495 6420468 +7 495 6420469 (Fax)

# **Customer Centre Finland**

01510 Vantaa

+358 207 189700

**Customer Centre France-Benelux** Brussel (Anderlecht)

+32 2 5295941

**Customer Centre Italy** 

Grisignano di Zocco (VI) +39 0444 414392

Bauer übernimmt keine Haftung für Irrtümer und Fehler in Katalogen, Prospekten und anderen gedruckten Unterlagen. Bauer behält sich das Recht vor, ohne vorherige Ankündigung Änderungen an ihren Produkten vorzunehmen, auch an Produkten, die bereits in Auftrag genommen wurden, insoweit keine schon vereinbarten technischen Spezifikationen dadurch geändert werden. Alle in dieser Publikation enthaltenen Warenzeichen sind alleiniges und exklusives Eigentum der jeweiligen Firmen. Bauer und das Bauer Logo sind Warenzeichen der Bauer Gear Motor GmbH. Alle Rechte vorbehalten.



Eberhard-Bauer-Straße 37 73734 Esslingen - Germany Tel: +49 711 3518-0 Fax: +49 711 3518-381

## www.bauergears.com